6,阶梯函数的积分、上函数的积分、一般区间上的Lebesgue可积函数类、Lebesgue积分的基本性质、Levi单调收敛定理、Lebesgue控制收敛定理、Lebesgue 广义积分。
评分10,有势场、保守场、同伦、管量场、恰当形式、Poincare引理、无旋场、势函数。
评分3,向量与纯量、线性组合、线性相关与线性无关、基与维数、矩阵的秩、线性方程组的可解性准则、线性映射、线性变换、线性函数、矩阵的运算、逆矩阵、矩阵的等价类、线性方程组的解空间。
评分 评分7,一元多项式环、多元多项式环、唯一析因环、环中的最大公因与最小公倍、环中元素的互素、整除性的判定、Euclid环、既约多项式、本原多项式、Gauss引理、Eisentein判别法。
评分1,代数学简史、线性方程组、auss消去法、低阶行列式、集合与映射、二元关系、等价关系、商映射、偏序集。
评分1,R^n中的Jordan测度、多重Riemann积分、Riemann可积性、Lebesgue定理、上积分与下积分、Darboux可积性定理、容许集、集合上的Riemann积分、多重Riemann积分的可加性、多重Riemann积分的估计。
评分中山大学崔尚斌教授最新的数序分析教材,很有现代气息,值得一读。教材对传统数学分析教材的编排做了一些与时俱进的改革,内容做了适当缩减和增补,除了如传统教材一样重视对基础知识和基本技巧的传授外,也增加了一些分析学的新内容。封面美观,印刷精美,很好。例题和习题比较多,证明过程也很详细,内容丰富。全书分为实数域和初等函数、数列的极限、函数的极限和连续性、 函数的导数、导数的应用、不定积分、定积分、定积分的应用、广义积分、无穷级数、函数序列和函数级数、幂级数、傅里叶级数、多元函数的极限和连续性、多元数量函数的微分学、多元向量函数的微分学、多元函数的极值、含参变量的积分、重积分、曲线积分和曲面积分、广义重积分和含参量的重积分、场论初步、微分形式和斯托克斯公式23章,每册书后面有综合习题吗,难度较大,非常精美。本书是作者根据多年讲授数学分析课程的经验,在对部分讲稿进行整理和扩充的基础上编写而成的。读者对象主要为综合性大学数学类各专业的本科生,也适用于师范院校、工科院校数学类各专业的本科生。此外,也可用作运用微积分知识比较多的其他专业,如力学、理论物理、气象等专业的本科生学习数学分析和高等数学课程的参考书。考虑到我国改革开放30多年来中学教育水平己大幅度提高,因而大学新生都已有相当好的中学数学知识,我们对传统数学分析教材的编排做了一些改革,内容做了适当缩减和增补。大力推荐!!!
评分4,作为有向体积的行列式、行列式的基本性质、子式、余子式、行列式的展开。
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.qciss.net All Rights Reserved. 图书大百科 版权所有