数学分析(A)-1
评分数学分析(A)-1
评分康托尔揭示了不同的n与空间Rn的一一对应关系.G.皮亚诺(Peano)则实现了把单位线段连续映入正方形.这两个发现启示了,在拓扑映射中,维数可能是不变的.1910年,布劳威尔对于任意的n证明了这个猜想——维数的拓扑不变性.在证明过程中,布劳威尔创造了连续拓扑映射的单纯逼近的概念,也就是一系列线性映射的逼近.他还创造了映射的拓扑度的概念——一个取决于拓扑映射连续变换的同伦类的数.实践证明,这些概念在解决重要的不变性问题时非常有用.例如,布劳威尔就借助它界定了n维区域;J.W.亚历山大(Alexander)则用它证明了贝蒂数的不变性.
评分不动点定理fixed-point theorem
评分10,函数单调性的条件、函数的内极值点、Young不等式、Holder不等式、Minkowski不等式、凸函数、Jensen不等式、函数作图
评分定理的一些等价形式
评分2,实数的公理系统、上下确界、自然数集、有理数集、无理数集、数学归纳法、Archimedes原理、数直线、实数的q进制表示、Dedekind分割。
评分goooooooooooooooooood
评分编辑本段定理启示建立布劳威尔不动点定理是他的突出贡献.这个定理表明:在二维球面上,任意映到自身的一一连续映射,必定至少有一个点是不变的.他把这一定理推广到高维球面.尤其是,在n维球内映到自身的任意连续映射至少有一个不动点.在定理证明的过程中,他引进了从一个复形到另一个复形的映射类,以及一个映射的映射度等概念.有了这些概念,他就能第一次处理一个流形上的向量场的奇点.
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.qciss.net All Rights Reserved. 图书大百科 版权所有