引力 [AN INTRODUCTION TO EINSTEINS GENERAL RELATIVITY]

引力 [AN INTRODUCTION TO EINSTEINS GENERAL RELATIVITY] 下載 mobi epub pdf 電子書 2024


簡體網頁||繁體網頁
[美] 哈蒂(Hartle J.B.) 著



點擊這裡下載
    


想要找書就要到 圖書大百科
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

發表於2024-12-23

類似圖書 點擊查看全場最低價

圖書介紹

齣版社: 世界圖書齣版公司
ISBN:9787506291781
版次:1
商品編碼:10175889
包裝:平裝
外文名稱:AN INTRODUCTION TO EINSTEINS GENERAL RELATIVITY
開本:16開
齣版時間:2008-09-01
用紙:膠版紙
頁數:582
正文語種:英語


相關圖書





圖書描述

內容簡介

  Einstein的廣義相對論是現代物理的基石。它包括瞭大量講述時空的前沿話題,黑洞、重力波以及宇宙學。隨著廣義相對論越來越成為同時代物理和天文學的中心,其在本科教育中的地位也顯得尤為重要。這本全新的教材很適閤本科生作為瞭解該課程的基礎理論。物理優先、數學理論盡可能少、大量的應用實例,作者為物理學傢和對該學科感興趣的讀者自然順暢的講述瞭這門學科。
  讀者對象:《引力》適用於物理專業的本科生,研究生以及對該學科感興趣的廣大讀者。
  目次:(第一部分)牛頓物理和狹義相對論中的時空:引力物理;幾何作為物理;牛頓物理中的空間;時間和引力;狹義相對論原理;狹義相對論力學; (第二部分)廣義相對論的彎麯時空:引力作為幾何;彎麯時空的描述;測地綫;球形星體外的幾何;廣義相對論的太陽係檢驗;實用相對論引力;引力坍縮和黑洞;天體物理學黑洞;微小轉動;鏇轉黑洞;引力波;宇宙觀察;宇宙學模型;什麼是宇宙以及為什麼;(第三部分)Einstein方程:數學部分;麯率和Einstein方程;麯率源;引力波發射;相對論星體。

內頁插圖

目錄

Preface
PART I SPACE AND TIME IN NEWTONIAN PHYSICS AND SPECIAL RELATIVITY
1 Gravitational Physics
2 Geometry as Physics
2.1 Gravity Is Geometry
2.2 Experiments in Geometry
2.3 Different Geometries
2.4 Specifying Geometry
2.5 Coordinates and Line Element
2.6 Coordinates and Invariance

3 Space, Time, and Gravity in Newtonian Physics
3.1 Inertial Frames
3.2 The Principle of Relativity
3.3 Newtonian Gravity
3.4 Gravitational and Inertial Mass
3.5 Variational Principle for Newtonian Mechanics

4 Principles of Special Relativity
4.1 The Addition of Velocities and the Michelson-Morley Experiment
4.2 Einsteins Resolution and Its Consequences
4.3 Spacetime
4.4 Time Dilation and the Twin Paradox
4.5 Lorentz Boosts
4.6 Units

5 Special Relativistic Mechanics
5.1 Four-Vectors
5.2 Special Relativistic Kinematics
5.3 Special Relativistic Dynamics
5.4 Variational Principle for Free Particle Motion
5.5 Light Rays
5.6 Observers and Observations

PART Ⅱ THE CURVED SPACETIMES OF GENERAL RELATIVITY
6 Gravity as Geometry
6.1 Testing the Equality of Gravitational and Inertial Mass
6.2 The Equivalence Principle
6.3 Clocks in a Gravitational Field
6.4 The Global Positioning System
6.5 Spacetime Is Curved
6.6 Newtonian Gravity in Spacetime Terms

7 The Description of Curved Spacetime
7.1 Coordinates
7.2 Metric
7.3 The Summation Convention
7.4 Local Inertial Frames
7.5 Light Cones and World Lines
7.6 Length, Area, Volume, and Four-Volume for Diagon Metrics
7.7 Embedding Diagrams and Wormholes
7.8 Vectors in Curved Spacetime
7.9 Three-Dimensional Surfaces in Four-Dimensional Spacetime

8 Geodesics
8.1 The Geodesic Equation
8.2 Solving the Geodesic Equation——-Symmetries and Conservation Laws
8.3 Null Geodesics
8.4 Local Inertial Frames and Freely Falling Frames

9 The Geometry Outside a Spherical Star
9.1 Schwarzschild Geometry
9.2 The Gravitational Redshift
9.3 Particle Orbits——Precession of the Perihelion
9.4 Light Ray Orbits——The Deflection and Time Delay of Light

10 Solar System Tests of General Relativity
10.1 Gravitational Redshift
10.2 PPN Parameters
10.3 Measurements of the PPN Parametery
10.4 Measurement of the PPN Parameter B-Precession of Mercurys Perihelion

11 Relativistic Gravity in Action
11.1 Gravitational Lensing
11.2 Accretion Disks Around Compact Objects
11.3 Binary Pulsars

12 Gravitational Collapse and Black Holes
12.1 The Schwarzschild Black Hole
12.2 Collapse to a Black Hole
12.3 Kruskal-Szekeres Coordinates
12.4 Nonspherical Gravitational Collapse

13 Astrophysical Black Holes
13.1 Black Holes in X-Ray Binaries
13.2 Black Holes in Galaxy Centers
13.3 Quantum Evaporation of Black Holes——Hawking Radiation

14 A Little Rotation
14.1 Rotational Dragging of Inertial Frames
14.2 Gyroscopes in Curved Spacetime
14.3 Geodetic Precession
14.4 Spacetime Outside a Slowly Rotating Spherical Body
14.5 Gyroscopes in the Spacetime of a Slowly Rotating Body
14.6 Gyros and Freely Falling Frames

15 Rotating Black Holes
15.1 Cosmic Censorship
15.2 The Kerr Geometry
15.3 The Horizon of a Rotating Black Hole
15.4 Orbits in the Equatorial Plane
15.5 The Ergosphere

16 Gravitational Waves
16.1 A Linearized Gravitational Wave
16.2 Detecting Gravitational Waves
16.3 Gravitational Wave Polarization
16.4 Gravitational Wave Interferometers
16.5 The Energy in Gravitational Waves

17 The Universe Observed
17.1 The Composition of the Universe
17.2 The Expanding Universe
17.3 Mapping the Universe

18 Cosmological Models
18.1 Homogeneous, Isotropic Spacetimes
18.2 The Cosmological Redshift
18.3 Matter, Radiation, and Vacuum
18.4 Evolution of the Flat FRW Models
18.5 The Big Bang and Age and Size of the Universe
18.6 Spatially Curved Robertson-Walker Metrics
18.7 Dynamics of the Universe

19 Which Universe and Why?
19.1 Surveying the Universe
19.2 Explaining the Universe

PART III THE EINSTEIN EQUATION
20 A Little More Math
20.1 Vectors
20.2 Dual Vectors
20.3 Tensors
20.4 The Covariant Derivative
20.5 Freely Falling Frames Again

21 Curvature and the Einstein Equation
21.1 Tidal Gravitational Forces
21.2 Equation of Geodesic Deviation
21.3 Riemann Curvature
21.4 The Einstein Equation in Vacuum
21.5 Linearized Gravity

22 The Source of Curvature
22.1 Densities
22.2 Conservation
22.2 Conservation of Energy-Momentum
22.3 The Einstein Equation
22.4 The Newtonian Limit

23 Gravitational Wave Emission
23.1 The Linearized Einstein Equation with Sources
23.2 Solving the Wave Equation with a Source
23.3 The General Solution of Linearized Gravity
23.4 Production of Weak Gravitational Waves
23.5 Gravitational Radiation from Binary Stars
23.6 The Quadrupole Formula for the Energy Loss in Gravitational Waves
23.7 Effects of Gravitational Radiation Detected in a Binary Pulsar
23.8 Strong Source Expectations

24 Relativistic Stars
24.1 The Power of the Pauli Principle
24.2 Relativistic Hydrostatic Equilibrium
24.3 Stellar Models
24.4 Matter in Its Ground State
24.5 Stability
24.6 Bounds on the Maximum Mass of Neutron Stars

APPENDIXES
A Units
A.1 Units in General
A.2 Units Employed in this Book
B Curvature Quantities
C Curvature and the Einstein Equation
D Pedagogical Strategy
D.1 Pedagogical Principles
D.2 Organization
D.3 Constructing Courses
Bibliography
Index

前言/序言

  ~Einsteins relativistic theory of gravitation——general relativity——will shortly be acentury old. At its core is one of the most beautiful and revolutionary conceptionsof modem science——the idea that gravity is the geometry of four-dimensionalcurved spacetime. Together with quantum theory, general relativity is one of thetwo most profound developments of twentieth-century physics.  General relativity has been accurately tested in the solar system. It underliesour understanding of the universe on the largest distance scales, and is centralto the explanation of such frontier astrophysical phenomena as gravitational col-lapse, black holes, X-ray sources, neutron stars, active galactic nuclei, gravita-tional waves, and the big bang. General relativity is the intellectual origin of manyideas in contemporary elementary particle physics and is a necessary prerequisiteto understanding theories of the unification of all forces such as string theory.  An introduction to this subject, so basic, so well established, so central to sev-eral branches of physics, and so interesting to the lay public is naturally a partof the education of every undergraduate physics major. Yet teaching general rel-ativity at an undergraduate level confronts a basic problem. The logical order ofteaching this subject (as for most others) is to assemble the necessary mathemati-cal tools, motivate the basic defining equations, solve the equations, and apply thesolutions to physically interesting circumstances. Developing the tools of differ-ential geometry, introducing the Einstein equation, and solving it is an elegant andsatisfying story. But it can also be a long one, too long in fact to cover both thatand introduce the many con~~temporary applications in the time that is typicallyavailable for an introductory undergraduate course.  Gravity introduces general relativity in a different order. The principles onwhich it is based are discussed at greater length in Appendix D, but essentiallythe strategy is the following: The simplest physically relevant solutions of theEinstein equation are presented first, without derivation, as spacetimes whose ob-servational consequences are to be explored by the study of the motion of testparticles and light rays in them. This 引力 [AN INTRODUCTION TO EINSTEINS GENERAL RELATIVITY] 下載 mobi epub pdf txt 電子書 格式

引力 [AN INTRODUCTION TO EINSTEINS GENERAL RELATIVITY] mobi 下載 pdf 下載 pub 下載 txt 電子書 下載 2024

引力 [AN INTRODUCTION TO EINSTEINS GENERAL RELATIVITY] 下載 mobi pdf epub txt 電子書 格式 2024

引力 [AN INTRODUCTION TO EINSTEINS GENERAL RELATIVITY] 下載 mobi epub pdf 電子書
想要找書就要到 圖書大百科
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

用戶評價

評分

This is a great book to take away for a weekend in the woods.

評分

《引力》適用於物理專業的本科生,研究生以及對該學科感興趣的廣大讀者。Einstein的廣義相對論是現代物理的基石。它包括瞭大量講述時空的前沿話題,黑洞、重力波以及宇宙學。隨著廣義相對論越來越成為同時代物理和天文學的中心,其在本科教育中的地位也顯得尤為重要。這本全新的教材很適閤本科生作為瞭解該課程的基礎理論。物理優先、數學理論盡可能少、大量的應用實例,作者為物理學傢和對該學科感興趣的讀者自然順暢的講述瞭這門學科。

評分

不錯,正品,送貨很及時,好評!

評分

引力所有物質,之間互相存在的吸引力,與物體的質量有關。物體如果距離過近會産生一定的斥力。引力為什麼産生,牛頓發現瞭引力問題,是他在思考問題時被蘋果砸在頭上。想到瞭引力的問題。但是對為什麼産生引力目前沒有解釋。引力的産生與質量的産生是聯係在一起的,質量是由空間的變化産生的一種效應,引力附屬質量的産生而齣現。引力定律:兩物體間的引力與它們的質量成正比,與距離的平方成反比。引力是質點吸引其他質點而本身受到的力。

評分

好好好好好好好好好好好好

評分

這本書裏還涉及許多科普的東西,諸如蟲洞,以及各種佯謬,非常適閤大傢瞭解廣義相對論。此書是英文版,需要一定的專業知識和術語,公式推導需要好的理解。

評分

很喜歡深入淺齣的書籍大緻翻瞭翻,數學內容較多,和另一本英文引力對應看,畢竟一個重理論,一個重數學,都是必要的。當然這些都是針對新手來說的,若有基礎的話可以隻參考這本!

評分

這本書是純英文的,適閤本科生作為瞭解該課程的基礎理論。物理優先、數學理論盡可能少、大量的應用實例,作者為物理學傢和對該學科感興趣的讀者自然順暢的講述瞭這門學科。

評分

這本書裏還涉及許多科普的東西,諸如蟲洞,以及各種佯謬,非常適閤大傢瞭解廣義相對論。此書是英文版,需要一定的專業知識和術語,公式推導需要好的理解。

類似圖書 點擊查看全場最低價

引力 [AN INTRODUCTION TO EINSTEINS GENERAL RELATIVITY] mobi epub pdf txt 電子書 格式下載 2024


分享鏈接




相關圖書


本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

友情鏈接

© 2024 book.qciss.net All Rights Reserved. 圖書大百科 版權所有