概率论 [Probability Theory]

概率论 [Probability Theory] pdf epub mobi txt 电子书 下载 2025

林正炎,苏中根 著
承接 住宅 自建房 室内改造 装修设计 免费咨询 QQ:624617358 一级注册建筑师 亲自为您回答、经验丰富,价格亲民。无论项目大小,都全力服务。期待合作,欢迎咨询!QQ:624617358
想要找书就要到 图书大百科
立刻按 ctrl+D收藏本页
你会得到大惊喜!!
出版社: 浙江大学出版社
ISBN:9787308045346
版次:2
商品编码:10082644
包装:平装
外文名称:Probability Theory
开本:32开
出版时间:2008-08-01
用纸:胶版纸
页数:337
正文语种:英文

具体描述

内容简介

  《概率论》以英文的形式介绍了高等学校概率论方面的知识。The subject matter of probability theory is the mathematical analysis of random events, that is, of those empirical phenomena which do not have deterministic regularity but possess some statistical regularity.

内页插图

目录

chapter 1 events and probabilities
1.1 random phenomena and statistical regularity
1.1.1 random phenomena
1.1.2 the statistical definition of probability
1.2 classical probability models
1.2.1 sample points and sample spaces
1.2.2 classical probability models
1.2.3 geometric probability models
1.3 the axiomatic definition of probability
1.3.1 events
1.3.2 probability space
1.3.3 continuity of probability measure
1.4 conditional probability and independent events
1.4.1 conditional probability
1.4.2 total probability formula and bayes’rule
1.4.3 independent events

chapter 2 random variables and distribution functions
2.1 discrete random variables
2.1.1 the concept of random variables
2.1.2 discrete random variables
2.2 distribution functions and continuous random variables
2.2.1 distribution functions
2.2.2 continuous random variables and density functions
2.2.3 typical continuous random variables
2.3 random vectors
2.3.1 discrete random vectors
2.3.2 joint distribution functions
2.3.3 continuous random vectors
2.4 conditional distributions and independence
2.4.1 conditional distributions
2.4.2 i ndependence of random variables
2.5 functions of random variables
2.5.1 functions of discrete random variables
2.5.2 functions of continuous random variables
2.5.3 functions of continuous random vectors
2.5.4 transforms of random vectors
2.5.5 important distributions in statistics

chapter 3 numerical characteristics and characteristic functions
3.1 mathematical expectations
3.1.1 expectations for discrete random variables
3.1.2 expectations of continuous random variables
chapter 4 probability limit theorems
appendix a distribution of typical random variables
appendix b tables
index

前言/序言

The subject matter of probability theory is the mathematical analysis of random events

用户评价

评分

(当P(B)不等于零时)。若B给之A的条件机率和A的机率相同时,则称A和B为独

评分

立事件。且A和B的此一关系为对称的,这可以由一同价叙述:“,当A和B为独立事件时。”中看出。机率论中的两个重要概念为随机变量和随机变量之机率分布这两种概念。 作为数学统计基础的概率论的创始人分别是法国数学家帕斯卡和费马。

评分

有人对博弈中的一些问题发生争论,其中的一个问题是“赌金分配问题”,他们决定请教法国数学家帕斯卡(Pascal)和费马(Fermat)基于排列组合方法,研究了一些较复杂的赌博问题,他们解决了分赌注问题、赌徒输光问题。他们对这个问题进行了认真的讨论,花费了3年的思考,并最终解决了这个问题,这个问题的解决直接推动了概率论的产生。 概率与统计的一些概念和简单的方法,早期主要用于赌博和人口统计模型。随着人类的社会实践,人们需要了解各种不确定现象中隐含的必然规律性,并用数学方法研究各种结果出现的可能性大小,从而产生了概率论,并使之逐步发展成一门严谨的学科。概率与统计的方法日益渗透到各个领域,并广泛应用于自然科学、经济学、医学、金融保险甚至人文科学中。

评分

(当P(B)不等于零时)。若B给之A的条件机率和A的机率相同时,则称A和B为独

评分

其他对概率论的发展作出重要贡献的人还有荷兰物理、数学家惠更斯,瑞士物理、数学家伯努利,法国数学家美弗,法国数学、天文学家拉普拉斯,德国数学家高斯,法国物理、数学家泊松,意大利数学、医学家卡尔达诺以及苏联数学家柯尔莫哥洛夫。

评分

骰子(11张)有关。16世纪,意大利的学者吉罗拉莫·卡尔达诺(Girolam oCardano,1501——1576)开始研究掷骰子等赌博中的一些简单问题。17世纪中叶,当时的法国宫廷贵族里盛行着掷骰子游戏,游戏规则是玩家连续掷 4 次骰子,如果其中没有 6 点出现,玩家赢,如果出现一次 6 点,则庄家(相当于赌场)赢。按照这一游戏规则,从长期来看,庄家扮演赢家的角色,而玩家大部分时间是输家,因为庄家总是要靠此为生的,因此当时人们也就接受了这种现象。

评分

立事件。且A和B的此一关系为对称的,这可以由一同价叙述:“,当A和B为独立事件时。”中看出。机率论中的两个重要概念为随机变量和随机变量之机率分布这两种概念。 作为数学统计基础的概率论的创始人分别是法国数学家帕斯卡和费马。

评分

有人对博弈中的一些问题发生争论,其中的一个问题是“赌金分配问题”,他们决定请教法国数学家帕斯卡(Pascal)和费马(Fermat)基于排列组合方法,研究了一些较复杂的赌博问题,他们解决了分赌注问题、赌徒输光问题。他们对这个问题进行了认真的讨论,花费了3年的思考,并最终解决了这个问题,这个问题的解决直接推动了概率论的产生。 概率与统计的一些概念和简单的方法,早期主要用于赌博和人口统计模型。随着人类的社会实践,人们需要了解各种不确定现象中隐含的必然规律性,并用数学方法研究各种结果出现的可能性大小,从而产生了概率论,并使之逐步发展成一门严谨的学科。概率与统计的方法日益渗透到各个领域,并广泛应用于自然科学、经济学、医学、金融保险甚至人文科学中。

评分

数学家和精算师认为机率是在0至1之间之闭区间的数字,指定给一发生与失败是随机的“事件”。机率P(A)根据机率公理来指定给事件A。一事件A在一事件B确定发生后会发生的机率称为B给之A的条件机率;其数值为

相关图书

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 book.qciss.net All Rights Reserved. 图书大百科 版权所有